Abstract
Profiling of DNA associated with illicit drug packages and paraphernalia is a common investigative tool. In addition, research is being conducted regarding the analysis of trace DNA present within illicit drugs and on capsules. The application of trace DNA analysis to illicit drugs has the potential to identify individuals involved in their manufacture and distribution. However, the inhibitory effects of illicit drugs and related compounds on downstream DNA analysis has not yet been investigated. If drug-induced polymerase chain reaction (PCR) inhibition occurs, the quality or informativeness of the resultant DNA profile may be impacted. In this study, the effects of a range of drugs, diluents, adulterants, and synthetic precursors on both quantitative PCR (qPCR) data and short tandem repeat (STR) DNA profiling results were examined. Twenty-two compounds representative of drug compounds and adulterants which may be encountered in drug seizures were spiked with 1 ng/μL and 0.05 ng/μL of control DNA and underwent DNA quantification using Quantifiler™ Trio. A subset of 13 compounds, including the majority that indicated potential inhibition in Quantifiler™ Trio, underwent STR profiling with VeriFiler™ Plus to determine if inhibition also occurred at this stage. The effect of diluting the DNA extract on the extent of inhibition of STR profiling was also investigated. Internal PCR controls within the qPCR were not a reliable indicator of inhibition, although suppression of the short and long autosomal fragments was observed in the presence of many compounds, and four compounds gave inconclusive results. STR internal quality controls indicated inhibition in 5 of the 13 compounds, however, profiles were affected by the presence of 11 of the 13 compounds in various ways such as a decreased average relative fluorescence units (RFU), drop out of certain alleles (some based on allele size range of locus) leading to a decreased likelihood ratio (LR), an increase in the proportion of stutter peaks and the presence of split or shoulder peaks. All profiles improved following a dilution of the compound in the PCR and allowing the generation of LR values in excess of 1 × 1025, indicating inhibition occurred rather than DNA degradation. The data obtained show that removal of some of these compounds is required through an effective DNA extraction process for successful downstream trace DNA profiling. Upon successful PCR, the resultant DNA profiles provide the opportunity for opening new investigative avenues for law enforcement agencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.