Abstract
The research community has begun looking for IP traffic classification techniques that do not rely on `well known' TCP or UDP port numbers, or interpreting the contents of packet payloads. New work is emerging on the use of statistical traffic characteristics to assist in the identification and classification process. This survey paper looks at emerging research into the application of Machine Learning (ML) techniques to IP traffic classification - an inter-disciplinary blend of IP networking and data mining techniques. We provide context and motivation for the application of ML techniques to IP traffic classification, and review 18 significant works that cover the dominant period from 2004 to early 2007. These works are categorized and reviewed according to their choice of ML strategies and primary contributions to the literature. We also discuss a number of key requirements for the employment of ML-based traffic classifiers in operational IP networks, and qualitatively critique the extent to which the reviewed works meet these requirements. Open issues and challenges in the field are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.