Abstract

Shape similarity assessment is a fundamental geometric reasoning problem that finds application in several different product design and manufacturing applications. A computationally efficient way to assess shape similarity is to first abstract 3D object shapes into shape signatures and use shape signatures to perform similarity assessment. Several different types of shape signatures have been developed in the past. This paper provides a survey of existing algorithms for computing and comparing shape signatures. Our survey consists of a description of the desired properties of shape signatures, a scheme for classifying different types of shape signatures, and descriptions of representative algorithms for computing and comparing shape signatures. This survey concludes by identifying directions for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.