Abstract
This text is a presentation of the general context and results of [Oll07] and [Oll09], with comments on related work. The goal is to present a notion of Ricci curvature valid on arbitrary metric spaces, such as graphs, and to generalize a series of classical theorems in positive Ricci curvature, such as spectral gap estimates, concentration of measure or log-Sobolev inequalities. The necessary background (concentration of measure, curvature in Riemannian geometry, convergence of Markov chains) is covered in the first section. Special emphasis is put on open questions of varying difficulty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.