Abstract

This paper provides a survey of the most important repair heuristics used in evolutionary algorithms to solve constrained optimization problems. Popular techniques are reviewed, such as some crossover operators in permutation encoding, algorithms for fixing the number of 1s in binary encoded genetic algorithms, and more specialized techniques such as Hopfield neural networks, heuristics for graphs and trees, and repair heuristics in grouping genetic algorithms. The survey also gives some indications about the design and implementation of hybrid evolutionary algorithms, and provides a revision of the most important applications in which hybrid evolutionary techniques have been used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.