Abstract
Lung cancer is the top cause for deaths by cancers whose 5-year survival rate is less than 20%. To improve the survival rate of patients with lung cancers, the early detection and early diagnosis is significant. Furthermore, early detection of pulmonary nodules is essential for the detection and diagnosis of lung cancer in early stage. The National Lung Screening Trial (NLST) showed annual screening by low-dose computed tomography (LDCT) could help to reduce the deaths caused by lung cancer of high-risk subjects by 20% comparing with screening by chest radiography. In past decade, there has been lots of works on computer-aided detection (CADe) and computer-aided diagnosis (CADx) for pulmonary nodules in computed tomography (CT) scans, whose target is to detect, segment the nodules and further classify them into benign and malignant efficiently and precisely. This survey reviews some recent works on detection, segmentation and classification for pulmonary nodule in CT scans with deep learning techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.