Abstract

In reality, the data generated in many fields are often imbalanced, such as fraud detection, network intrusion detection and disease diagnosis. The class with fewer instances in the data is called the minority class, and the minority class in some applications contains the significant information. So far, many classification methods and strategies for binary imbalanced data have been proposed, but there are still many problems and challenges in multi-class imbalanced data that need to be solved urgently. The classification methods for multi-class imbalanced data are analyzed and summarized in terms of data preprocessing methods and algorithm-level classification methods, and the performance of the algorithms using the same dataset is compared separately. In the data preprocessing methods, the methods of oversampling, under-sampling, hybrid sampling and feature selection are mainly introduced. Algorithm-level classification methods are comprehensively introduced in four aspects: ensemble learning, neural network, support vector machine and multi-class decomposition technique. At the same time, all data preprocessing methods and algorithm-level classification methods are analyzed in detail in terms of the techniques used, comparison algorithms, pros and cons, respectively. Moreover, the evaluation metrics commonly used for multi-class imbalanced data classification methods are described comprehensively. Finally, the future directions of multi-class imbalanced data classification are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.