Abstract

The giant molecule titin/connectin was demonstrated to connect the ends of thick filaments with the Z-disks and thus to provide an elastic connection that seems to be responsible for passive tension in striated muscle. To investigate the physiological limits of I-band titin extension in skeletal muscle, we have measured sarcomere lengths of a number of mouse postural and clonal muscles in situ under the constraints imposed by the skeletal, ligamentous and tendinous components of the motile apparatus. These values now give upper limits for the extension of the I-band and therefore for the maximal degree of titin extension under physiological constraints. We find that I-band extension in all muscles investigated does not exceed a factor of approximately 2.5 in situ, which is well below values obtainable in isolated fibre preparations. Approach to the yield-point is therefore prevented by extramuscular mechanisms. Sarcomere lengths near the tendinous junction and within the muscle are virtually identical in extended muscle, suggesting that a major function of titin in intact muscle is to ensure uniform sarcomere lengths over the entire muscle length and thus to prevent localized myofibril overstretch during isometric contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.