Abstract

The mechanism of eutectoid decomposition in ten Ti-X binary systems, wherein X was successively Bi, Co, Cr, Cu, Fe, Mn, Ni, Pb, Pd and Pt, has been investigated. In hypo-eutectoid alloys, the bainite reaction (defined in the present context as a nonlamellar dispersion of intermetallic compound particles amongst proeutectoid a) predominated in all alloys studied but Ti-Cu, where both bainite and pear lite were formed. In alloys of near eutectoid composition pearlite was the dominant product in some systems and bainite was in others. These results are essentially independent of reaction temperature. They are quite different from analogous ones in Fe-C alloys, where pearlite is the principal eutectoid structure formed at high temperatures and bainite plays this role at low tem-peratures. The difference between the Ti-X and Fe-C behaviors was explained in terms of the much more pronounced tendency for proeutectoid α plate formation in Ti-X than in Fe-C alloys and, on a theory due to Hillert, of the need for disordered interphase boundaries in order to develop the cooperative growth mode that leads to the evolution of pearlite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.