Abstract
The research topic of estimating hand pose from the images of hand-object interaction has the potential for replicating natural hand behavior in many practical applications of virtual reality and robotics. However, the intricacy of hand-object interaction combined with mutual occlusion, and the need for physical plausibility, brings many challenges to the problem. This paper provides a comprehensive survey of the state-of-the-art deep learning-based approaches for estimating hand pose (joint and shape) in the context of hand-object interaction. We discuss various deep learning-based approaches to image-based hand tracking, including hand joint and shape estimation. In addition, we review the hand-object interaction dataset benchmarks that are well-utilized in hand joint and shape estimation methods. Deep learning has emerged as a powerful technique for solving many problems including hand pose estimation. While we cover extensive research in the field, we discuss the remaining challenges leading to future research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.