Abstract

Blockchain is a revolutionary technology that has reshaped the trust model among mutually distrustful peers in a distributed network. While blockchain is well-known for its initial usage in a public manner, such as the cryptocurrency of Bitcoin, consortium blockchain, which requires authentication of all involved participants, has also been widely adopted in various domains. Nevertheless, there is a lack of comprehensive study of consortium blockchain in terms of its architecture design, consensus mechanisms, comparative performance, etc. In this study, we aim to fill this gap by surveying the most popular consortium blockchain platforms and assessing their core designs in a layered fashion. Particularly, Byzantine fault tolerant (BFT) state machine replication (SMR) is introduced to act as a basic computational model of consortium blockchain. Then the consortium blockchain is split into the hardware layer, layer-0 (network layer), layer-I (data layer, consensus layer and contract layer), layer-II protocols, and application layer. Each layer is presented with closely related discussion and analysis. Furthermore, with the extraction of the core functionalities, i.e., robust storage and guaranteed execution, that a consortium blockchain can provide, several typical consortium blockchain-empowered decentralized application scenarios are introduced. With these thorough studies and analyses, this work aims to systematize the knowledge dispersed in the consortium blockchain, highlight the unsolved challenges, and also indicate the propitious avenues of future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call