Abstract
Community detection is one of the popular research topics in the field of complex networks analysis. It aims to identify communities, represented as cohesive subgroups or clusters, where nodes in the same community link to each other more densely than others outside. Due to the interpretability, simplicity, flexibility, and generality, nonnegative matrix factorization (NMF) has become a very ideal model for community detection and lots of related methods have been presented. To facilitate research on NMF-based community detection, in this article, we make a comprehensive review on NMF-based methods for community detection, especially the state-of-the-art methods presented in high prestige journals or conferences. First, we introduce the basic principles of NMF and explain why NMF can detect communities and design a general framework of NMF-based community detection. Second, according to the applicable network types, we propose a taxonomy to divide the existing NMF-based methods for community detection into six categories, namely, topology networks, signed networks, attributed networks, multilayer networks, dynamic networks, and large-scale networks. We deeply analyze representative methods in every category. Finally, we summarize the common problems faced by all methods and potential solutions and propose four promising research directions. We believe that this survey can fully demonstrate the versatility of NMF-based community detection and serve as a useful guideline for researchers in related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.