Abstract

Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.

Highlights

  • Aquaporins are well known for their transport of water and other small neutral solutes [1]

  • Higher plants have five aquaporin subfamilies (plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), Nodulin 26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs), and X-intrinsic proteins (XIPs) [2], where the PIP group aquaporins consist of two separate groups, PIP1 and PIP2

  • We investigated whether the activity of the endogenous kinases in the X. laevis oocytes might influence the phosphorylation state of HvPIP2;8 or HvPIP2;8 S285D by applying a kinase inhibitor H7

Read more

Summary

Introduction

Aquaporins are well known for their transport of water and other small neutral solutes [1]. PIPs can influence plant hydraulic conductivity [3], and some have been implicated in guard cell closure in response to ABA [4], in signaling in guard cells [5], and in CO2 sensing [6]. The regulation of PIPs in plants changes in response to salt treatments, and these changes might influence plant adaptation to salinity [7,8]. Targeting of PIPs to the plasma membrane and regulation of their internalization under salinity is dependent on the phosphorylation status of a serine (S283) in the carboxyl terminal domain [1,9]

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.