Abstract

A major obstacle to achieving significant speed-up on parallel machines is the overhead associated with synchronizing the concurrent processes. Removing the synchronization constraint has the potential of speeding up the computation. Recently developed asynchronous finite-difference schemes for parabolic PDEs designed for parallel computation are surveyed. Specifically, we consider the asynchronous (AS), corrected asynchronous (CA), time stabilizing (TS), parametric (PAR), and hybrid (HYB) schemes. The AS scheme is applicable only to steady-state problems. AS, CA, and TS provide first-order spatial approximations. TS, however, minimizes the first-order errors by maintaining the time stabilizing property which also enables it to be implemented on parallel machines in which some processors have persistent speed differences. The PAR algorithm gives a second-order approximation that is inefficient. The HYB algorithms are high-order schemes which have the potential to be applicable also to nonlinear problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.