Abstract
We study the implications of LHC results for the abundance of long-lived staus after freeze-out from thermal equilibrium in a super-WIMP dark matter scenario. We classify regions in the MSSM parameter space according to the stau yield, considering all possible co-annihilation effects as well as the effects of resonances and large Higgs-sfermion couplings. Afterwards, we examine the viability of these regions after imposing experimental and theoretical constraints, in particular a Higgs mass around 125 GeV and null-searches for heavy stable charged particles (HSCP) at the LHC. We work in a pMSSM framework and perform a Monte Carlo scan over the parameter space. To interpret the HSCP searches in our scenario, we consider all potentially important superparticle production processes, developing a fast estimator for NLO cross sections for electroweak and strong production at the LHC. After applying all constraints, we find that stau yields below 10^-14 occur only for resonant annihilation via a heavy Higgs in combination with either co-annihilation or large left-right stau mixing. We encounter allowed points with yields as low as 2x10^-16, thus satisfying limits from big bang nucleosynthesis even for large stau lifetimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.