Abstract
Data mining, also identified as knowledge discovery in databases has well-known its place as an important and significant research area. The objective of data mining (DM) is to take out higher-level unknown detail from a great quantity of raw data. DM has been used in a variety of data domains. DM can be considered as an algorithmic method that takes data as input and yields patterns, such as classification rules, itemsets, association rules, or summaries, as output. The ’classical’ associations rule issue manages the age of association rules by support portraying a base level of confidence and support that the roduced rules should meet. The most standard and classical algorithm used for ARM is Apriori algorithm. It is used for delivering frequent itemsets for the database. The essential thought behind this algorithm is that numerous passes are made the database. The total usage of association rule strategies strengthens the knowledge management process and enables showcasing faculty to know their customers well to give better quality organizations. In this paper, the detailed description has been performed on the Genetic algorithm and FP-Growth with the applications of the Association Rule Mining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Computer Science and Software Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.