Abstract

DNA microarray is a powerful technology that can simultaneously determine the levels of thousands of transcripts (generated, for example, from genes/miRNAs) across different experimental conditions or tissue samples. The motto of differential expression analysis is to identify the transcripts whose expressions change significantly across different types of samples or experimental conditions. A number of statistical testing methods are available for this purpose. In this paper, we provide a comprehensive survey on different parametric and non-parametric testing methodologies for identifying differential expression from microarray data sets. The performances of the different testing methods have been compared based on some real-life miRNA and mRNA expression data sets. For validating the resulting differentially expressed miRNAs, the outcomes of each test are checked with the information available for miRNA in the standard miRNA database PhenomiR 2.0. Subsequently, we have prepared different simulated data sets of different sample sizes (from 10 to 100 per group/population) and thereafter the power of each test have been calculated individually. The comparative simulated study might lead to formulate robust and comprehensive judgements about the performance of each test in the basis of assumption of data distribution. Finally, a list of advantages and limitations of the different statistical tests has been provided, along with indications of some areas where further studies are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.