Abstract

Molecular Dynamic (MD) simulation is a standard computational tool in soft matter physics. While very powerful, it is computationally expensive, leading to some simulations taking days or even weeks to complete depending on the size of your computer cluster. Finding computationally cheap surrogate models which can learn the output features of MD simulation is therefore highly motivated. In this report I explore the use of deep neural network ensembles as well as support vector machine regressors as surrogate models for MD simulation. From the output of the surrogate models, we can then employ unsupervised learning methods to get insight into the physics of our system, and classify boundaries between phases. We will also show the potential of this method to uncover behavior not realized by other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.