Abstract

In this contribution we propose a data-driven surrogate model for the prediction of permeabilities and laminar flow through two-dimensional random micro-heterogeneous materials; here Darcy’s law is used. The philosophy of the proposed scheme is to provide a large number of training sets through a numerically “cheap” (stochastic) model instead of using an “expensive” (FEM) one. In order to achieve an efficient computational tool for the generation of the database (up to 10^3 and much more realizations), needed for the training of the neural networks, we apply a stochastic model based on the Brownian motion. An efficient algebraic algorithm compared to a classical Monte Carlo approach is based on the evaluation of stochastic transition matrices. For the encoding of the microstructure and the optimization of the surrogate model, we compare two architectures, the so-called UResNet model and the Fourier Convolutional Neural Network (FCNN). Here we analyze two FCNNs, one based on the discrete cosine transformation and one based on the complex-valued discrete Fourier transformation. Finally, we compare the flux fields and the permeabilities for independent microstructures (not used in the training set) with results from the hbox {FE}^2 method, a numerical homogenization scheme, in order to demonstrate the efficiency of the proposed surrogate model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.