Abstract

• A surrogate based multi-fidelity framework for RDO is proposed. • The first approach is highly efficient and requires very few actual simulations. • Second approach yields highly accurate result from slightly increased simulation. Robust design optimization (RDO) is a field of optimization in which certain measure of robustness is sought against uncertainty. Unlike conventional optimization, the number of function evaluations in RDO is significantly more which often renders it time consuming and computationally cumbersome. This paper presents two new methods for solving the RDO problems. The proposed methods couple differential evolution algorithm (DEA) with polynomial correlated function expansion (PCFE). While DEA is utilized for solving the optimization problem, PCFE is utilized for calculating the statistical moments. Three examples have been presented to illustrate the performance of the proposed approaches. Results obtained indicate that the proposed approaches provide accurate and computationally efficient estimates of the RDO problems. Moreover, the proposed approaches outperforms popular RDO techniques such as tensor product quadrature, Taylor’s series and Kriging. Finally, the proposed approaches have been utilized for robust hydroelectric flow optimization, demonstrating its capability in solving large scale problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call