Abstract

The surface-to-borehole transient electromagnetic (TEM) method, which uses a rectangular loop as its source, has shown great potential in mineral exploration at greater depth. However, recent studies have demonstrated that a grounded-wire source can resolve the resistive targets and provide detection at greater depths than the loop source. Thus, we propose a surface-to-borehole TEM method using a grounded wire as a transmitter at short offsets. We conducted numerical experiments to explain the variation of different parameters and its comparable effects on the TEM transients. Similarly, a systematic comparison of the cross-sectional electric field distribution maps, borehole profiles of the time derivatives of the magnetic field, qualitatively reveal that the proposed method induces detectable responses for conductive and resistive targets at greater depths. In the present study, unlike the loop source configuration, the time derivative of an underground magnetic field in horizontal direction showed high sensitivity to resistive bodies. Furthermore, 1-D inversion was performed to provide quantitative interpretation of the borehole data. The 1-D inversion of the surface and borehole data was realized using an Occam-type inversion scheme. The results of both synthetic and field data indicate that inverting the surface or borehole data separately resulted in degraded resolution in both shallow and deep earth. Thus, we also compared the results from the inversions of surface and borehole data in order to explore the merits of joint inversion in resolving shallow and deep structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call