Abstract
A surface-enhanced Raman scattering (SERS)-active optical fiber sensor combining the optical fiber waveguide with various SERS substrates has been a powerful analytical tool for in situ and long-distance SERS detection with high sensitivity. The design and modification of a high-quality SERS-active sensing layer are important topics in the development of novel SERS-active optical fiber sensors. Here, we prepared a highly sensitive SERS-active optrode by in situ fabrication of a three-dimensional porous structure on the optical fiber end via a photoinduced polymerization reaction, followed by the growth of photochemical silver nanoparticles above the porous polymer material. The fabrication process is rapid (finished within 1 h) and can be on line under light control. The porous structure supports vast silver nanoparticles, which allows for strong electromagnetic enhancement of SERS. Interestingly, the preparation of this SERS optrode and its utilization for SERS detection can all be conducted in a microfluidic chip. The qualitative and quantitative on-chip SERS sensing of organic pollutants and pesticides has been achieved by this SERS optrode-integrated microfluidic chip, and its high detection sensitivity makes it a promising factor in the analysis of liquid systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.