Abstract

Semiconductor diode lasers can be used in a variety of applications including telecommunications, displays, solid-state lighting, sensing and printing. Among them, vertical-cavity surface-emitting lasers1,2,3 (VCSELs) are particularly promising. Because they emit light normal to the constituent wafer surface, it is possible to extract light more efficiently and to fabricate two-dimensional device arrays. A VCSEL contains two distributed Bragg reflector (DBR) mirrors for optical feedback, separated by a very short active gain region. Typically, the reflectivity of the DBRs must exceed 99.5% in order for the VCSEL to lase. However, the realization of practical VCSELs that can be used over a broad spectrum of wavelengths has been hindered by the poor optical and thermal properties of candidate DBR materials4,5,6. In this Letter, we present surface-emitting lasers that incorporate a single-layer high-index-contrast subwavelength grating7,8 (HCG). The HCG provides both efficient optical feedback and control of the wavelength and polarization of the emitted light. Such integration reduces the required VCSEL mirror epitaxial thickness by a factor of two and increases fabrication tolerance. This work will directly influence the future designs of VCSELs, photovoltaic cells and light-emitting diodes at blue–green, 1.3–1.55 µm and mid- to far-infrared wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.