Abstract

The surface-to-surface contact algorithm has been proposed to overcome the drawbacks of node-to-surface algorithm in finite element method implementations. In the surface-to-surface algorithm, contact constraints are imposed between sub-elements rather than between nodes, and an auxiliary plane for each element is introduced to perform overlapping area detection. This work presents a combination of the surface-to-surface algorithm and the boundary face method (BFM) for solving contact problems in three dimensions. The BFM is based on boundary integral equation and is a truly isogeometric method, as it makes direct use of the geometric information of the bounding surface of a body. Apparently, the BFM is more suitable for solving contact problems. In our implementation, the auxiliary plane is no more necessary, but replaced by the boundary faces themselves which already exist in the BFM data structure. Our implementation is natural and can more precisely match the contact conditions between faces, and therefore, higher level of accuracy can be expected. Numerical examples presented have demonstrated the advantages of the combined method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call