Abstract

High-speed rechargeability is essential for next-generation secondary batteries. Introducing a surface-supporting material deposited on a cathode material accelerates Li-ion motions between an electrode−electrolyte interface by an electric field concentration at a supporting material-cathode-electrolyte (triple-phase) interface (TPI). In addition, a high relative permittivity material was found to be a promising supporting material with which to reinforce the electric field concentration at TPIs. However, the TPI’s effects on anode materials remains to be revealed. To demonstrate those effects, we prepared CeO2 or BaTiO3 micropads deposited on Li4Ti5O12 epitaxial thin films. Compared with the cathodes, CeO2 micropads deposited on Li4Ti5O12 film showed the best performance at a high C-rate. Because the rate-determining step of Li4Ti5O12 epitaxial thin films is inner diffusion, reinforcing the surface electric field by the deposition of a low relative permittivity materials could promote high C-rate performance even in anode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.