Abstract

In this work, a surface potential modeling approach has been proposed to model dual gate, bilayer graphene field effect transistor. The equivalent capacitive network of GFET has been improved considering the quantum capacitance effect for each layer and interlayer capacitances. Surface potentials of both layers are determined analytically from equivalent capacitive network. The explicit expression of drain to source current is established from drift-diffusion transport mechanism using the surface potentials of the layers. The drain current characteristics and transfer characteristics of the developed model shows good agreement with the experimental results in literatures. The small signal parameters of intrinsic graphene transistor i.e., output conductance ([Formula: see text]), transconductance ([Formula: see text]), gate to drain capacitance ([Formula: see text]) and gate to source capacitance ([Formula: see text]) have been derived and finally, the cut-off frequency is determined for the developed model. The model is compared with reported experimental data using Normalized Root Mean Square Error (NRMSE) metric and it shows less than [Formula: see text] NRMSE. A Verilog-A code has been developed for this model and a single ended frequency doubler has been designed in Cadence Design environment using this Verilog-A model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call