Abstract

The antibiotic moenomycin A inhibits the biosynthesis of peptidoglycan, the main structural polymer of the bacterial cell wall. The inhibition is based on a reversible binding of the antibiotic to one of the substrate binding sites in enzymes such as penicillin-binding protein (PBP) 1b. A novel assay based on surface plasmon resonance (SPR) has been established that can be used to investigate selective binding of the moenomycin sugar moiety and other transglycosylase inhibitors to this enzyme. Suitable ligands were prepared from moenomycin A and coupled to SPR sensor surfaces. Moenomycin analogues with structural variations were used to perform competitive SPR experiments with PBP 1b. The SPR results confirm for the first time that the trisaccharide fragment of moenomycin A (C-E-F-G-H-I) is the minimal structure that possesses all moieties sufficient for biological activity and for affinity towards PBP 1b. The method seems to be appropriate for use in screens for transglycosylase inhibitors that bind to the moenomycin-binding site of the enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.