Abstract

In this work, we present a plasmonic near infrared light photodetector for the detection of 980 nm illumination. The plasmonic photodetector is fabricated by modifying single layer graphene (SLG)/InP Schottky junction diode with SiO2 encapsulated gold nanorods (SiO2@AuNR), which can confine the incident NIR light by inducing obvious localized surface plasmon resonance, according to theoretical simulation based on finite element method. This study shows that after decoration with plasmonic SiO2@AuNR, the device performance in terms of photocurrent and responsivity is considerably enhanced. In addition, the device exhibited a very fast respose rate which is able to monitor switching optical signals with a frequency as high as 1 MHz, suggesting a potential application for sensing high‐frequency optical signals. This study manifests that the present plasmonic NIR photodetector will have great potential in future optoelectronic devices application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.