Abstract

Parkinson's Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming a PD diagnosis are extremely invasive. This prevents their use as a screening tool for the early onset stages of PD. We propose a surface imprinted polymer (SIP) electroimpedance spectroscopy (EIS) biosensor for detecting α-Synuclein (αSyn) and its aggregates, a biomarker that appears in saliva and blood during the early stages of PD as the blood-brain barrier degrades. The surface imprinted polymer stamp is fabricated by low-temperature melt stamping polycaprolactone (PCL) on interdigitated EIS electrodes. The result is a low-cost, small-footprint biosensor that is highly suitable for non-invasive monitoring of the disease biomarker. The sensors were tested with αSyn dilutions in deionized water and in constant ionic concentration matrix solutions with decreasing concentrations of αSyn to remove the background effects of concentration. The device response confirmed the specificity of these devices to the target protein of monomeric αSyn. The sensor limit of detection was measured to be 5 pg/L, and its linear detection range was 5 pg/L-5 µg/L. This covers the physiological range of αSyn in saliva and makes this a highly promising method of quantifying αSyn monomers for PD patients in the future. The SIP surface was regenerated, and the sensor was reused to demonstrate its capability for repeat sensing as a potential continuous monitoring tool for the disease biomarker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call