Abstract
Yolk-shell silicon/carbon composite encapsulated by uniform carbon shell (Si@C) are becoming an effective method to mitigate volume-related issues of Si-based anodes and maintain an excellent performance for lithium-ion batteries (LIBs). However, a uniform carbon shell in Si@C is difficult to guarantee. Herein, a facile surface-engineering-assisted strategy is described to prepare Si@C composite with low-cost modified recycled waste silicon powders (RWSi) as core coated by a uniform carbon shell-protective layer derived from the pyrolysis of poly (methyl methacrylate) (PMMA) as carbon source (m-RWSi@PMMA-C). In this process, surface-engineering is performed with silane coupling agent kh550 to functionalize the RWSi particles via a silanization reaction, guaranteeing a uniform PMMA coating which will be transformed into carbon shell-protective layer after carbonization. The m-RWSi@PMMA-C electrode delivers an optimal discharge capacity of 1083 mAhg−1 at 200 mAg−1 after 200 cycles with an initial capacity of 3176.2 mAhg−1 and a high initial Coulombic efficiency (ICE) of 75.6%. Based on these results, the recycled silicon-based anode with a uniform carbon shell-protective layer displays great application potential and it also brings a new perspective on silicon-based anodes via surface-engineering method for LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.