Abstract
A gastric evacuation curve expresses how fast prey disappear from the stomach, and empirical models are used generally for the relationship between weight of prey remaining (Wt) and time (t) after a meal. Unfortunately, empirical models are likely to have restricted applicability because their parameters often represent limited biological mechanisms. This paper develops a simple digestion model. The simplest form of the model has four parameters; the digestion velocity (expressing enzymatic breakdown of prey), prey length, initial prey radius and the density of the prey. Two more parameters are included in an extended version; a time-delay before digestion starts and environmental temperature. The approach is based on the assumption that prey digestion is a surface process in that digestive enzymes attack progressively deeper into a prey of known size and shape so that the average digestion rate is proportional to the prey radius r (m). This process is characterized by the digestion velocity ds (m s –1). Unknown parameters are estimated with uncertainty using the maximum likelihood technique. Model evaluation using published data sets demonstrated that the new model is flexible. Prey geometry is incorporated into the model and temperature effects upon gastric evacuation are linked directly to the digestion velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.