Abstract

Surface defect inspection is vital for the quality control of products and the fault diagnosis of equipment. Defect inspection remains challenging due to the low level of automation in some manufacturing plants and the difficulty in identifying defects. To improve the automation and intelligence levels of defect inspection, a CNN model is proposed for the high-precision defect inspection of USB components in the actual demands of factories. First, the defect inspection system was built, and a dataset named USB-SG, which contained five types of defects—dents, scratches, spots, stains, and normal—was established. The pixel-level defect ground-truth annotations were manually marked. This paper puts forward a CNN model for solving the problem of defect inspection tasks, and three strategies are proposed to improve the model’s performance. The proposed model is built based on the lightweight SqueezeNet network, and a rich feature extraction block is designed to capture semantic and detailed information. Residual-based progressive feature integration is proposed to fuse the extracted features, which can reduce the difficulty of model fine-tuning and improve the generalization ability. Finally, a multi-step deep supervision scheme is proposed to supervise the feature integration process. The experiments on the USB-SG dataset prove that the model proposed in this paper has better performance than that of other methods, and the running speed can meet the real-time demand, which has broad application prospects in the industrial inspection scene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call