Abstract
Camptothecin, as an antitumor drug, has shown significant antitumor activity against various cancers through the inhibition of topoisomerase I. However, its poor solubility severely limits the clinical applications. Here, we report a camptothecin supramolecular vesicle based on the host–guest interactions, which can uniformly disperse camptothecin into water and greatly enhance camptothecin aqueous solubility. The camptothecin vesicles were identified by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scattering (DLS). X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV–vis spectrum, 1H NMR and 2D NMR ROESY were further employed to study the formation mechanism of the vesicles. Furthermore, camptothecin could be controllably released when the competitive guests were added into the vesicles system. Finally, the camptothecin vesicles in aqueous solution exhibited comparable antitumor activity in vitro as natural camptothecin in DMSO to HeLa cells under the same conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.