Abstract

AbstractThree‐component mixtures (diblock copolymer/metal ion/oligoligand) can assemble into micellar particles owing to a combination of supramolecular polymerization and electrostatic complex formation. Such particles cover a large range of compositions, but the electrostatic forces keeping them together make them rather susceptible to disintegration by added salt. Now it is shown how the salt stability can be tuned continuously by employing both a bis‐ligand and a tris‐ligand, and varying the ratio of these in the mixture. For magnetic ions such as MnII and FeIII, the choice of the multiligand also affects the ion/water interaction and, hence, the magnetic relaxivity. As an example, MnII‐based nanoparticles with a very high longitudinal relaxivity (10.8 mm−1 s−1) were investigated that are not only biocompatible but also feature strong contrast enhancement in target organs (liver, kidney), as shown by T1‐weighted in vivo magnetic resonance imaging (MRI).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.