Abstract

Prompted by a knowledge of the photoprotective mechanism operating in photosystem supercomplexes and bacterial antenna complexes by pigment binding proteins, we have appealed to a boxlike synthetic receptor (ExBox·4Cl) that binds a photosensitizer, 5,15-diphenylporphyrin (DPP), to provide photoprotection by regulating light energy. The hydrophilic ExBox4+ renders DPP soluble in water and modulates the phototoxicity of DPP by trapping it in its cavity and releasing it when required. While trapping removes access to the DPP triplet state, a pH-dependent release of diprotonated DPP (DPPH22+) restores the triplet deactivation pathway, thereby activating its ability to generate reactive oxygen species. We have employed the ExBox4+-bound DPP complex (ExBox4+⊃DPP) for the safe delivery of DPP into the lysosomes of cancer cells, imaging the cells by utilizing the fluorescence of the released DPPH22+ and regulating photodynamic therapy to kill cancer cells with high efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.