Abstract
Aging is the time dependent deterioration of an organism's normal biological processes that increases the probability of death. Many genetic factors contribute to alterations in the normal aging process. These factors intersect in complex ways, as evidenced by the wealth of documented links identified and conserved in many organisms. Most of these studies focus on loss-of-function, null mutants that allow for rapid screening of many genes simultaneously. There is much less work that focuses on characterizing the role that overexpression of a gene in this process. In the present work, we present a straightforward methodology to identify and clone genes in the budding yeast, Saccharomyces cerevisiae, for study in suppression of the short-lived chronological lifespan phenotype seen in many genetic backgrounds. This protocol is designed to be accessible to researchers from a wide variety of backgrounds and at various academic stages. The SIR2 gene, which codes for a histone deacetylase, was selected for cloning in the pRS315 vector, as there have been conflicting reports on its effect on the chronological lifespan. SIR2 also plays a role in autophagy, which results when disrupted via the deletion of several genes, including the transcription factor ATG1. As a proof of principle, we clone the SIR2 gene to perform a suppressor screen on the shortened lifespan phenotype characteristic of the autophagy deficient atg1Δ mutant and compare it to an otherwise isogenic, wild type genetic background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.