Abstract
Bi-Objective Combinatorial Optimization problems are ubiquitous in real-world applications and designing approaches to solve them efficiently is an important research area of Artificial Intelligence. In Constraint Programming, the recently introduced bi-objective Pareto constraint allows one to solve bi-objective combinatorial optimization problems exactly. Using this constraint, every non-dominated solution is collected in a single tree-search while pruning sub-trees that cannot lead to a non-dominated solution. This paper introduces a simpler and more efficient filtering algorithm for the bi-objective Pareto constraint. The efficiency of this algorithm is experimentally confirmed on classical bi-objective benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.