Abstract
In this paper, a state-of-the-art machine learning approach known as support vector regression (SVR) is introduced to develop a model that predicts consumers’ affective responses (CARs) for product form design. First, pairwise adjectives were used to describe the CARs toward product samples. Second, the product form features (PFFs) were examined systematically and then stored them either as continuous or discrete attributes. The adjective evaluation data of consumers were gathered from questionnaires. Finally, prediction models based on different adjectives were constructed using SVR, which trained a series of PFFs and the average CAR rating of all the respondents. The real-coded genetic algorithm (RCGA) was used to determine the optimal training parameters of SVR. The predictive performance of the SVR with RCGA (SVR–RCGA) is compared to that of SVR with 5-fold cross-validation (SVR–5FCV) and a back-propagation neural network (BPNN) with 5-fold cross-validation (BPNN–5FCV). The experimental results using the data sets on mobile phones and electronic scooters show that SVR performs better than BPNN. Moreover, the RCGA for optimizing training parameters for SVR is more convenient for practical usage in product form design than the timeconsuming CV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.