Abstract
The sentiment analysis used in this study is the process of classifying text into two classes, namely negative and positive classes. The classification method used is Support Vector Machine (SVM). The successful classification of the SVM method depends on the soft margin coefficient C, as well as the σ parameter of the kernel function. Therefore we need a combination of SVM parameters that are appropriate for classifying film opinion data using the SVM method. This study uses the Firefly method as an SVM parameter optimization method. The dataset used in this study is public opinion data on several films. The results of this study indicate that the Firefly Algorithm (FA) can be used to find optimal parameters in the SVM classifier. This is evidenced by the results of SVM system testing using 2179 data with nine SVM parameter combinations resulting in 85% highest accuracy, while the FA-SVM system with nine population and generation combinations produces the highest accuracy of 88%. The second test results using 1200 data using the same combination as the one test, the SVM method produces the highest accuracy of 87%, while the FA-SVM method produces the highest accuracy of 89%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.