Abstract

This study aimed to investigate the feasibility of using a model based on particle swarm optimization (PSO) and support vector machine (SVM) to predict the unconfined compressive strength (UCS) of cemented paste backfill (CTB). The dataset was built based on the experimental UCS values. Results revealed that the categorized randomly segmentation was a suitable approach to establish the training set. The PSO performed well in the SVM hyperparameters tuning; the optimal hyperparameters for the SVM to predict the UCS of CTB in this study were C = 71.923, ε = 0.0625, and γ = 0.195. The established model showed a high accuracy and efficiency on the prediction work. The R2 value was 0.97 and the MSE value was 0.0044. It was concluded that the model was feasible to predict the UCS of CTB with high accuracy and efficiency. In the future, the accuracy and robustness of the prediction model will be further improved as the size of the dataset continues to grow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.