Abstract

A recent global outbreak of Corona Virus Disease 2019 (COVID-19) has led to massive supply chain disruption, resulting in difficulties for manufacturers on recovering their supply chains in a short term. This paper presents a supply chain disruption recovery strategy with the motivation of changing the original product type to cope with that. In order to maximize the total profit from product changes, a mixed integer linear programming (MILP) model is developed with combining emergency procurement on the supply side and product changes by the manufacturer as well as backorder price compensation on the demand side. The model uses a heuristic algorithm based on ILOG CPLEX toolbox. Experimental results show that the proposed disruption recovery strategy can effectively reduce the profit loss of manufacturer due to late delivery and order cancellation. It is observed that the impact of supply chain disruptions is reduced. The proposed model can offer a potentially useful tool to help the manufacturers decide on the optimal recovery strategy whenever the supply chain system experiences a sudden massive disruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.