Abstract

BackgroundA supervised land cover classification was developed from very high resolution IKONOS satellite data and extensive ground truth sampling of a ca. 10 sq km malaria-endemic lowland in western Kenya. The classification was then applied to an investigation of distribution of larval Anopheles habitats. The hypothesis was that the distribution and abundance of aquatic habitats of larvae of various species of mosquitoes in the genus Anopheles is associated with identifiable landscape features.Results and discussionThe classification resulted in 7 distinguishable land cover types, each with a distinguishable vegetation pattern, was highly accurate (89%, Kappa statistic = 0.86), and had a low rate of omission and commission errors. A total of 1,198 habitats and 19,776 Anopheles larvae of 9 species were quantified in samples from a rainy season, and 184 habitats and 582 larvae from a dry season. Anopheles gambiae s.l. was the dominant species complex (51% of total) and A. arabiensis the dominant species. Agricultural land covers (mature maize fields, newly cultivated fields, and pastured grasslands) were positively associated with presence of larval habitats, and were located relatively close to stream channels; whilst nonagricultural land covers (short shrubs, medium shrubs, tall shrubs, and bare soil around residences) were negatively associated with presence of larval habitats and were more distant from stream channels. Number of larval habitats declined exponentially with distance from streams. IKONOS imagery was not useful in direct detection of larval habitats because they were small and turbid (resembling bare soil), but was useful in localization of them through statistical associations with specific land covers.ConclusionA supervised classification of land cover types in rural, lowland, western Kenya revealed a largely human-modified and fragmented landscape consisting of agricultural and domestic land uses. Within it, larval habitats of Anopheles vectors of human malaria were associated with certain land cover types, of largely agricultural origin, and close to streams. Knowledge of these associations can inform malaria control to gather information on potential larval habitats more efficiently than by field survey and can do so over large areas.

Highlights

  • A supervised land cover classification was developed from very high resolution IKONOS satellite data and extensive ground truth sampling of a ca. 10 sq km malaria-endemic lowland in western Kenya

  • Conversion of natural papyrus marshes to drained fields for cultivation of crops resulted in increased local temperature, creation of suitable A. gambiae s.l. larval habitats, and elevated risk of epidemic malaria transmission in a highland region of southwestern Uganda [12]

  • Occurrence of A. gambiae larvae was negatively associated with canopy cover and emergent plants in natural habitats located in forest and swamp land cover types

Read more

Summary

Introduction

A supervised land cover classification was developed from very high resolution IKONOS satellite data and extensive ground truth sampling of a ca. 10 sq km malaria-endemic lowland in western Kenya. The distribution of the most efficient malaria vector species in sub-Saharan Africa, Anopheles gambiae, is influenced by particular topographic and environmental factors which in turn influence the location and productivity of the larval habitats in both lowland and highland [8,9,10] regions of western Kenya, where malaria is highly endemic [7,11]. Occurrence of A. gambiae larvae was negatively associated with canopy cover and emergent plants in natural habitats located in forest and swamp land cover types These findings suggest that variation in landscape structure is important to bionomics of malaria vectors and to malaria transmission and that such variations may be related to land use, vegetation, and microclimate. The influence of landscape structure in the context of a comprehensive, supervised classified land cover on these relationships has not been quantified in a lowland malaria endemic setting

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call