Abstract

Merger and Acquisition (M&A) prediction has been an interesting and challenging research topic in the past a few decades. However, past work has only adopted numerical features in building models, and yet the valuable textual information from the great variety of social media sites has not been touched at all. To fully explore this information, we used the profiles and news articles for companies and people on TechCrunch, the leading and largest public database for the tech world, which anybody can edit. Specifically, we explored topic features via topic modeling techniques, as well as a set of other novel features of our design within a machine learning framework. We conducted experiments of the largest scale in the literature, and achieved a high true positive rate (TP) between 60% to 79.8% with a false positive rate (FP) mostly between 0% and 8.3% over company categories with a small number of missing attributes in the CrunchBase profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.