Abstract

In this paper, we propose an approach for email spam detection based on text semantic analysis at two levels. The first level allows categorization of emails by specific domains (e.g., health, education, finance, etc.). The second level uses semantic features for spam detection in each specific domain. We show that the proposed method provides an efficient representation of internal semantic structure of email content which allows for more precise and interpretable spam filtering results compared to existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.