Abstract

In recent years, the amount of data to process has increased in many application areas such as network monitoring, web click and sensor data analysis. Data stream mining answers to the challenge of massive data processing, this paradigm allows for treating pieces of data on the fly and overcomes exhaustive data storage. The detection of changes in a data stream distribution is an important issue which application area is wide. In this article, change detection problem is turned into a supervised learning task. We chose to exploit the supervised discretization method “MODL” given its interesting properties. Our approach is favorably compared with an alternative method on artificial data streams, and is applied on real data streams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.