Abstract

We present a SUSY SU(5)xT' unified flavour model with type I see-saw mechanism of neutrino mass generation, which predicts the reactor neutrino angle to be \theta_{13} = 0.14 close to the recent results from the Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino mixing angles, which are compatible with the existing data. The T' breaking leads to tri-bimaximal mixing in the neutrino sector, which is perturbed by sizeable corrections from the charged lepton sector. The model exhibits geometrical CP violation, where all complex phases have their origin from the complex Clebsch-Gordan coefficients of T'. The values of the Dirac and Majorana CP violating phases are predicted. For the Dirac phase in the standard parametrisation of the neutrino mixing matrix we get a value close to 90 degrees \delta = \pi/2 - 0.45 \theta^c = 84.3 degrees, \theta^c being the Cabibbo angle. The neutrino mass spectrum can be with normal ordering (2 cases) or inverted ordering. In each case the values of the three light neutrino masses are predicted with relatively small uncertainties, which allows to get also unambiguous predictions for the neutrino-less double beta decay effective Majorana mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call