Abstract

This paper presents a novel superstructure-based optimization model for the synthesis of industrial water networks with partitioning regenerators. Such regenerators function by splitting a contaminated water stream into a regenerated lean stream and a low-quality reject stream. Membrane separation-based processes are examples of these types of regenerators. The optimization model presented in this work integrates a single, centralized partitioning regenerator with a source–demand superstructure under the assumption that the processes within the plant are of the fixed flow rate type. The formulation is non-linear as a result of the presence of bilinear terms in the regenerator balance equations, but global optimal solutions can be found using commercial software. The features of the model are illustrated by solving case studies from the literature. It is notable from these examples that considerable design flexibility exists in networks of this type, since potentially both the lean and reject streams from the partitioning regenerator can be reused/recycled within the plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.