Abstract

Abstract We examine the new Galactic supernova remnant (SNR) candidate, G23.11+0.18, as seen by the Murchison Widefield Array radio telescope. We describe the morphology of the candidate and find a spectral index of −0.63 ± 0.05 in the 70–170 MHz domain. Coincident TeV gamma-ray detection in High Energy Stereoscopic System (HESS) data supports the SNR nature of G23.11+0.18 and suggests that G23.11+0.18 is accelerating particles beyond TeV energies, thus making this object a promising new cosmic-ray hadron source candidate. The remnant cannot be seen in current optical, infrared and X-ray data sets. We do find, however, a dip in CO-traced molecular gas at a line-of-sight velocity of ∼85 km s−1, suggesting the existence of a G23.11+0.18 progenitor wind-blown bubble. Furthermore, the discovery of molecular gas clumps at a neighboring velocity toward HESS J1832−085 adheres to the notion that a hadronic gamma-ray production mechanism is plausible toward the north of the remnant. Based on these morphological arguments, we propose an interstellar medium association for G23.11+0.18 at a kinematic distance of 4.6 ± 0.8 kpc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call