Abstract

In this paper we propose a new predictor-corrector algorithm with superlinear convergence in a wide neighborhood for linear programming problems. We let the centering parameter in a predictor step is chosen adaptively, which is different from other algorithms in the same wide neighborhood. The choice is a key for the local convergence of the new algorithm. In addition, we use the classical affine scaling direction as a part in a corrector step, not in a predictor step, which contributes to the complexity result. We prove that the new algorithm has a polynomial complexity of \(O(\sqrt{n}L)\), and the duality gap sequence is superlinearly convergent to zero, under the assumption that the iterate points sequence is convergent. Finally, numerical tests indicate its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.