Abstract
A general class of variational models with concave priors is considered for obtaining certain sparse solutions, for which nonsmoothness and non-Lipschitz continuity of the objective functions pose significant challenges from an analytical as well as numerical point of view. For computing a stationary point of the underlying variational problem, a Newton-type scheme with provable convergence properties is proposed. The possible non-positive definiteness of the generalized Hessian is handled by a tailored regularization technique, which is motivated by reweighting as well as the classical trust-region method. Our numerical experiments demonstrate selected applications in image processing, support vector machines, and optimal control of partial differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.